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INTRODUCTION 

A substantial need has been demonstrated within Armament Research and 
Development Center (ARDC) for a convenient-to-use and computationally efficient 
flight simulation for smart munitions. The simulation must be easily adaptable 
to varying projectile designs and especially to changes in autopilots which 
undergo rapid evolution. During the design cycle of the projectile, a large 
number of individual flight simulations must be performed. As an example, during 
the development of the Copperhead projectile, the ARDC scientific computers were 
overwhelmed by the workload and a substantial amount of the available time on the 
BRL CDC 7600 supercomputer was dedicated to the computations. In spite of the 
continuous development and improvement in computer systems, flight simulations 
will continue to provide a substantial workload which must be accomplished effi- 
ciently. 

To meet this need, ARDC is formulating methods and writing modular software 
for rapidly developing autopilot simulations for guided projectiles and muni- 
tions. An innovative technique was developed by which exact analytical solutions 
to the required transfer functions are applied in a piecewise manner within a 
larger but lower frequency problem which must be solved numerically. 

Since the time constants associated with the autopilot components are often 
small compared with their driving terms, the integration time step is driven to 
very small values to obtain stable numerical integrations which results in very 
long computer run times. The use of piecewise analytical solutions to the trans- 
fer functions guarantees valid integration of the autopilot transfer functions 
regardless of the integration timp step, provided that the driving terms vary 
inappreciably over the time step. This is a less stringent requirement than is 
needed for stable numerical irtegration since the driving term rates are commen- 
surate with the airframe time constants, which are typically large compared to 
that of the autopilot. 

Five transfer functions were solved in closed form to provide a fast 
executing computer code. These particular transfer functions were selected since 
an autopilot can generally be represented by a concatenation of these functions 
to rate sensors, switches, limiters, and dead zones. 

DISCUSSION 

Apart from switches, limiters, and dead zones, autopilot transfer functions 
are Laplace transform representations of differential equations. Incorporated 
into a digital simulation, transfer functions are converted into differential 
equations and are usually solved numerically. Sometimes this causes considerably 
longer run times than simulation of unguided projectiles. 

The time step required to perform the integration is driven by two con- 
straints: (1) The driving term or input must not vary appreciably in the time 
step.   (2)  The time step must be sufficiently small to insure a stable 



integration. If the time constants associated with the autopilot are small com- 
pared to those of the airframe (which is typical), the integration time step will 
be driven to very small values and run times will be very long. Since the 
driving term is a product of the airframe motion, an inherently slower process, 
stable integration is a stronger driver to fine integration than the driving 
term's remaining essentially constant during the integration time step. By 
analytically solving these transfer functions stepwise with constant driving 
terms, the second constraint is eliminated. The size of the integration time 
step is limited only by the first constraint. Therefore, the use of closed form, 
analytic, stepwise solutions subject only to the first constraint can lead to 
larger integration time steps and shorter run times.^ 

Only five transfer functions are needed to handle the typical autODilot: 
the first-order lag, the first-order lag with differentiation, the fir- -order 
lead/lag, the first-order lag with integrator, and the second-or.er lag/ 
oscillator. (Guidance and control systems often contain rate sensors. The 
treatment of rate sensors will be published in a separate report.) These 
transfer functions are described and solved analytically below; the computer code 
Implementing the solutions is shown in appendix A.^ 

Throughout this development, the driving term is assumed not to vary appre- 
ciably during a time step. Care must be taken to adjust the time step downward 
as necessary to satisfy this requirement. To take advantage of this technique 
for reducing run time, the time step should be increased whenever the driving 
terras are varying slowly. 

ANALYSIS 

First-Order Lag 

A first-order lag is represented by the Laplace operator s as 

l/(Ts + 1) 

In differential equation form 

T dy/dt + y = D dj 

Michael J. Amoruso and Dennis D. Ladd, "TELUM, A Comprehensive Digital Flight 
Simulation of the Copperhead Projectile," Special Publication ARLCD-SP-82003, 
U.S. Army Armament Research and Development Command, Dover, NJ, June 1982. 

Analytical methods used in this study were derived from John J. D'Azzo and 
Constantine H. Houpis, Feedback Control Systems Analysis and Synthesis, 
McGraw-Hill, New York, 1960; and Murray R. Spiegel, implied Differential 
Equations. Prentice-Hall, Englewood Cliffs, NJ, 1958. 



where 

y = output or dependent variable 

t = time or Independent variable 

T = time constant 

D = driving term 

The general solution to equation 1 is the sura of a particular solution and a 
general solution to the homogeneous forra. The homogeneous equation was obtained 
by setting D to zero and can be written as 

- T dy/y = dt 

which can be verified to yield the solution 

y = e 
-(t - A)/T 

(2) 

where^A is the integration constant determined from the initial conditions y = y 

Jeneou^'lquat^it^'z.''' '"'"'' conditions yields the general solution to the horno-^ 

y = y^e 
-(t - tJ/T 

(3) 

For a particular solution to equation 1, the expression is verified 
tion by substitu- 

y = 1 - e 
-(t - tJ/T 

(4) 

Adding equations 3 and 4 gives the complete general solution 

y(t) = y^e 
-(t - tJ/T 

1 - e 
-(t - t )/T 

(5) 

Note that equation 5 has the correct limit of D as T goes to zero. 



First-Order Lag with Differentiation 

This transfer function has the Laplace operator representation 

s/(Ts + 1) 

or the time domain form 

T dy/dt + y = dD/dt (gj 

This representation is not desirable since the driving term appears as a time 
derivative that would generally have to be evaluated numerically. However, equa- 
tion 6 can be recast as a pair of coupled differential equations that do not 
contain any derivatives of the driving term D. An auxiliary variable z is intro- 
duced and the equation is replaced by the expressions 

dz/dt = y (7) 

and 

y = (D - z)/T (8) 

Differentiating equation 8 and using equation 7 to eliminate dz/dt verifies that 
these two equations are equivalent to equation 6. Note that the derivative of D 
does not appear. By combining equations 7 and 8, the expression for z(t) is 
obtained, 

dz/dt + z/T = D/T (9) 

and, after integration, the results for z(t) substituted into equation 8. Equa- 
tion 9 can be integrated from equation 5 by noting the identity of equations 1 
and 9.  Therefore, 

-(t - t )/T 
y(t) = e (D - zJ/T . (10) 

where z^ = z at t = t .  The auxiliary variable z^ can be eliminated by using 
equation 8. ° ^    s 



y(t) = 

[^-(t - tJ/T] 
(D - D^) + 

-(t - t )/T 

o   ■'o (11) 

Note that the exponential over T goes to 1/ft - *- ^ K,, TIU  -... I I 
equation 11 has the cortect ll„lt lo/dt as I'Ls ?' ^J,"- "--'"^'^ -^^ ~ 'h" 

First-Order Lead/Lag 

This transfer function Is represented by 

(T2S + 1)/(TIS +1)     T, ,t 0 

or 

Ti dy/dt + y = To dD/dt + D 
(12) 

The derivative of the driving term is usually not available in analytic form  It 
IS eliminated by introducing an auxiliary variable, z, --    -^.        .^°™-  ^^ 
equations and a pair of coupled 

dz/dt = (D - y)/Tj 
(13) 

aiul 

y = (T2/TJ D + z 
(14) 

The equivalence with equation 14 can be verified by differentiafnncr ^^ or,H ^K 

eliminating dz/dt with equation 13.  To obtain t Vressionfrry7t)\:^^^^^ 
equation 14 as follows 

?! dz/dt + z = (l - T2/TJ D 
(15) 



This is obtained by substituting equation 14 into equation 13, and then substi- 
tuting the result for z(t) into equation 14 to obtain y(t). The explicit solu- 
tion will not be written. Instead, an algorithm will be provided based on the 
observation that equation 15 is equivalent to equation 1 if the following substi- 
tutions are made: 

■1-1    z -v y    (l - T2/TJD ^ D (16) T, > T 

Algorithm: 

1. Substitute equation 16 into equation 5 to obtain z(t). 

2. Save z(t) for use as z^ in the next integration step. 

3. Substitute z(t) into equation 14 to obtain y(t). 

Note that the lag time constant cannot be zero in equation 16, but a vanish- 
ing lead time constant yields the correct limiting case of a simple first-order 
lag. 

First-Order Lag with Integrator 

The representation of this transfer function is 

1/s (Ts + 1) 

or 

T d2y/dt2 + dy/dt = D (17) 

Substitution verifies that the following expression is a particular solution to 
the nonhomogeneous differential equation 17 since, by assumption, D is constant 
during the integration time step: 

y = Dt (18) 

The homogeneous form of equation 17 can be written as the coupled equations 

T dz/dt + z = 0 (19) 



and 

-  = dy/dt (20) 

Equation 19 is similar to equation 1 with the substitution of z for y and zero 
tor D; therefore, the solution can be obtained from equations 2 and 20 

dy/dt = z(t) = e"^'^ - A>/T 

or 

y(t) = -Te-^^ - ^)/T . B (21) 

Mnn71^\^'f "".^"l^"" to equation 17 is the sum of the general homogeneous solu- 
tion Uq 21) and the particular nonhomogeneous solution (eq 18) 

y(t) = -Te ^^  ^^/^ + Dt + B (22) 

dy/dt = e-^^ - A)/^ . . (23) 

The integration constants A and B can be determined by invoking the initial 
ditions    V   =    v       anri    Hw/rlf-    =    ,r'     o*-    t-    _    4. con- 

o 
ditions y = y^ and dy/dt = y' at t = t 

-(t^ - A)/T 

^o = -"^^ -^ '^ '^o "" ^ (24) 

-(t, -A)/T 
y' = e       ,  + D (25) 

The Integration constant A can be eliminated from equation 24 by using equation 
^:> to eliminate the exponential term and solving for B 



B = Yo + T (y* - D) - Dt^ 

Taking the natural logarithm of equation 25 yields 

A = T In (y' - D) + t 
o 

The explicit solution is therefore 

r     -ft - t i/T 
y(t) = y^ + T (y' - D) 1 - e     ° 

" L 

and 

(26) 

(27) 

D (t - tJ (28) 

-(t - t^)/T 
dy/dt = (y' - D) e      °   + D (29) 

Note that equations 28 and 29 go to the correct limits if T goes to zero. 

Second-Order Lag/Oscillator 

This transfer function can be represented in the form 

l/(Is2 + Ds + K)       K 7i 0, I * 0 

or 

1 d2y/dt2 + dy/dt + Ky = T 

The homogeneous solution to equation 30 can be verified to be 

/'^^   Lt 
y(t) = e 

(30) 

(31) 

by substituting into the homogeneous form of equation 30 to obtain the character- 
istic equation 

IL2 + DL + K = 0 (32) 



which has the following roots: 

M = ! -D + (D - 4 IK) 
V2 

/2I (33) 

N = f   2       //z' 
-D - (D - 4 IK) /2I (34) 

The following three cases are treated separately according to whether the radi- 
cand IS positive, negative, or zero. 

be 

Case 1.  Positive radicand, damped solution 

The homogeneous and nonhomogeneous particular solutions can be verified to 

f^\        A Mt  „ Nt yjj(t) = Ae  + Be (35) 

yp(t) = T/K (36) 

The complete solution is 

y(t) = Ae^*^ + Be^' + T/K (37) 

dy/dt = MAe^*^ + NBe^' (38) 

The initial conditions y^ = y at t and y' = dy/dt at t„ determine the constants 
A and B. o 

Mt     Nt 
y^ = Ae ° + Be ° + T/K (39) 



Mt      Nt 
y' = MAS ° + NBe * 

Solving simultaneously gives 

(40) 

-N t 
B = [y^ - y'/M - T/K)e   °/ [l - N/M) (41) 

-M t 
A = (y^ - y'/N - T/K)e   °/ [i - M/N) 

Case 2.  Zero radicand, critically damped 

The characteristic equation has only one distinct root 

L = -D/2I 

(42) 

(43) 

The homogeneous general solution and nonhomogeneous particular solution can be 
verlried to be 

yjj (t) = Ae" + Bte^^ (44) 

yH(t) - T/K (43J 

The complete solution is 

y(t) = (A+ Bt) e^*" + T/K (46) 

dy/dt = (LA + B + LBt)e^^ (47) 

10 



Using the Initial conditions y =■ y at t  and y' 
constant can be determined as follows:   ° 

= dy/dt at t , the integrati on 

Lt 
y^ = (A + Bt Je  ° + T/K (48) 

Lt 
y' = (LA + B + LBt )e ° (49) 

-Lt 
B = e  ° [y* + L (T/K - y )] (50) 

-Lt 
A= [(y^- t/K) [1 +L tj - t^y'je  ° (51) 

Case 3. Negative radicand, oscillation 

The roots of the characteristic equation become complex numbers 

0) = (K/I) - (D/2I) 
V: 

(52) 

The homogeneous and nonhomogeneous particular solutions are 

Lt 
yg(t) = Ae  sin (ut + ()>) + T/K (53) 

yH(t) = T/K (54) 

11 



where A and <}, are integration constants.  The complete solution is 

Lt 
y =  Ae     sin  (tot + (j))  + T/K (55) 

Lt 
dy/dt = LAe       sin  (wt + ()>)+ ojAe       cos   (ut + 4,) (56) 

Using the initial conditions y and y' and solving for A in the 
gives .        " expression ior y 

-L t 
A = [y^ - T/K)e   °/sin (uit^ + <)>) (57) 

where 

sin (tot + (})) 9t 0 
(58) 

If equation 58 fails, A can be obtained from the expression for y' 

-L t 
A = y'e /[L sin (to t^ + (|)) + 0) cos (tot + (j,)] (59) 

or^hLn 1 ^'l"! 52 is always positive definite and the sine and cosine are 
^yon^^T.Vi ^ ^^. ^^"^'^^^^ 57 or 59 is always defined. Note that the expres- 
sions still contain the phase angle <|,. Solving for ,{, yields the same result 
whether equation 57 is substituted into the initial condition on dy/dt or equa- 
tion 59 into the initial condition on y. ^ 

-1 
(J) = tan 

(y^ - T/K) 

[y' - L(y^ - T/K)] 
- to t (60) 

Fn^Mnn^An* ?""   be eliminated in equation 57 or 59 by substituting equation 60. 
Equation 60 shows that equation 58 is equivalent to s  4   ui ou. 

y^ - T/K = 0 
(61) 

12 



The imposition in equation 30 of the requirement that parameters K and I not 
vanish was aeccssary for the validity of the solutions.  For example, equations 

,'  ; ^"'^.^^ ^^^°"^ singular when K vanishes.  Similarly, the roots of the 

nlrr UmUaM ''"V'°" ^'^ V"'1n^ " '   ''   ^^^° ^^<^^ '''   '^   -^ 52).  This i not a limitation since equation 30 reduces to a first-order lag with integrator 
when K vanishes and to a simple first-order lag when I vanishes.       integrator 

However  the parameter D in equation 30 may be zero.  If D vanishes  the 
characteristic equation 32 degenerates to vanisnes. the 

IL2 + K = 0 

M = ± -K/L 
V. 

= ± i 0) 

damninr Onlv \ I ,^rf "^^^^ corresponding to a pure oscillation with no 
damping Only case 3 should be considered. Nowhere does D appear in the denomi- 
nator of any expression; therefore, the solution remains valid if D is zero 

RESULTS 

on thl .nT . r^ ^^ 'resulting from this piecewise analytical technique depends 
on the speed of execution of Lhe competing numerical method. A sample run is 
included in appendix B so that comparisons can be made with other preferred 
numerical integration techniques. For comparison, the last case (KTFID=13) was 
run analytically with time steps of 0.01 and 0.005 second and run numerically 
using Advanced Continuous Simulation Language (ACSL).3 whereas the analytical 
method gave the same results for time steps 0.001 and 0.005 second, IcSL cJuld 
not operate with a time step of 0.001 second.  ACSL was able to obtain nearly 

second Th" T"" " """ "''" °' °-°''°^ ^^'^""^ '^"^ f^il-d -fter the third second.  These results are compared as follows: 

Time 
(sec) 

Analyt ical Num< 
DT= 

2rical (ACSL) 
DT=0.01 sec 

10.00000 

DT=0.005 sec 

10.00000 

=0.00001 sec 

0 
10.00000 

1 1.54640 1.54640 1.54381 
2 -9.52188 -9.52188 -9.52327 

3 -4.49206 -4.49206 -4.48494 

!!!,r"!^!^i.^°"''^""°"f ^^'^"^^'^^"^ Language. User Guide/Reference Manual. Mitchell 
and Gauthler Associates, Inc., Concord, MA, 1981. " 

13 



In this particular case, the analytical technique resulted in at least two orders 
of magnitude improvement in integration step size. 

GONa.DSIONS 

The modular, piecewise analytical technique presented in this report can 
result is considerable savings in analysis and associated computer time. 

14 



APPENDIX A 

PROGRAM LISTING AND SAMPLE EXECUTION 
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PROGRAM  LISTING 

PROGRAM TFMAIN(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) 
C       MAIN PROGRAM TO DRIVE TRANSFER FUNCTION SUBROUTINE. 
C FOR TEST PURPOSES ONLY. 

COMMON/TRNSF/TAU1(50),TAU2(50),TAU3(50),TFTIME(50),TFAUX(50 
+ TFAUX2 (50) ,KTFTYP(50) ,GAIN (50) 
OPEN (8) 
WRITE(8,11) 

C      READ INPUT DATA AND INITIALIZE. 
CALL TRNF 10 
WRITE (8,11) 

C 200 DEFINE INTEGRATION TIME STEP DT. 
DT = .005 
DT2= DT/2. 
WRITE(8,13) DT 
DO 2 J=l,13 
WRITE (8,12) 

C 100 DEFINE INITIAL TIME T AND FINAL TIME TMAX. 
T = 0.0 
TMAX = 5.0 
KMAX = IFIX(TMAX/DT)+1 
DO 1 K=0,KMAX 
T = DT*FLOAT(K) 

C 300 DEFINE DRIVING TERM "DRIVE" 
DRIVE = COS(2.*T) - l.O 
CALL TRNF (DRIVE,XOUT,T,J) 
IF(ABS(IFIX(T)-T).LT.DT2) WRITE(8,10) J,T,DRIVE,XOUT 

1 CONTINUE 
2 CONTINUE 

STOP 
10 FORMAT(1X,I5,3F20.5) 
11 FORMAT('1') 
12 FORMAT(//,' LTFID' ,16X, "TIME- ,14X, -DRIVE' ,19X, 'X') 
13 FOR'IATC THE INTEGRATION TIME STEP DT = ',F9.6,'   ' //) 

^WD * 

SUBROUTINE TRNF 10 
C LTFTYP  1 -> GAIN/(TAU1*S+1) 
C 2 -> GAIN*S/(TAU1*S+1) 
C 3 _> GAIN/(S*(TAU1*S+1)) 
C 4 -> GAIN*(TAU2*S+1)/(TAU1*S+1) 
C 5 -> GAIN/(TAU1*S**2 + TAU2*S +TAU3) 
C LTFID   ID NO. OF CHANNEL (VARIABLE). 
C TUl     FIRST TIME CONSTANT 
C TU2     SECOND TIME CONSTANT (LTFTYP=4 OR 5) 
C TU3      THIRD TIME CONSTANT (LTFTYP=5) 

17 



C     XO      INITIAL CONDITION ON VARIABLE 
C     DXO     INITIAL CONDITION ON DERIVATIVE (LTFTYP=5) 
C     AA      ALPHAMERIC LABEL FOR PRINTOUT 

COMMON/TRNSF/TAUl(50) ,TAU2 (50) ,TAU3 (50) ,TFTIME(50) ,TFAUX (50) , 
+ TFAUX2(50),KTFTYP(50),GAIN(50) 
CHARACTER AA*30,LABEL(5)*30 
DATA LABEL/'GAIN/(TAU1*S+1) ', 

+ 'GAIN*S/(TAU1*S+1) ', 
+ 'GAIN/(S*(TAU1*S+1)) ', 
+ 'GAIN*(TAU2*S+1)/(TAU1*S+1)     ', 
+ 'GAIN/(TAU1*S**2+TAU2*S+TAU3)  '/ 
WRITE (8,1050) 
DO 1 1=1,50 
TAUl(I)    = 0. 
TAU2(I)    = 0. 
TAU3(I)    = 0. 
TFTIME(I)  =0. , 
TFAUX(I)   = 0. 
TFAUX2(I)  = 0. 
KTFTYP(I)  = 0 
GAIN(I)     =0. 

1 CONTINUE 
IFLAG = 0 
DO 2 1=1,50 
READ (5,1051,END=4) LTFID,LTFTYP,TUl,TU2,TU3,GA,XO,DX0,AA 
IF (LTFTYP.LT.l .OR. LTFTYP.GT.5) THEN 
WRITE(8,1052)LTFID,LTFTYP,TU1,TU2,TU3,GA,X0,DX0,AA 
IFLAG = 1 
WRITE(8,1004) 
GO TO 2 
ELSE 
WRITE(8,10 52)LTFID,LTFTYP,TU1,TU2,TU3,GA,X0,DX0,AA,LABEL(LTFTYP) 
END IF 
IF (LTFID.LT.l .OR. LTFID.GT.50) THEN 

IFLAG = 1 
WRITE (8,1001) 
GO TO 2 
END IF 

IF(TAUl(LTFID).NE.O..0R.TAU2(LTFID).NE.O..0R.TAU3(LTFID).NE.O. 
+ .OR.KTFTYP (LTFID) .NE.O) THEN 

IFLAG =1 
WRITE(8,1002) 
GO TO 2 
END IF 

IF(TU1.GT.0..AND.TU2.EQ.0..AND.TU3.GT.0..AND.LTFTYP.EQ.5) 
+ GO TO 3 
IF ((TUl.LE.O..OR.TU2.LE.0..OR.TU3.LE.0.).AND.LTFTYP.EQ.5)THEN 

WRITE (8,1003) 
IF (TUl.EQ.O. .AND. TU3.GT.0. .AND.TU2.GT.0.)  THEN 
WRITE(8,1005) 
LTFTYP  = 1 

18 



GA = GA/TU3 
TU1=TU2/TU3 
TU2=0. 
TU3=0. 
WRITE(8,1000) 
WRITE(8,10 52)LTFID,LTFTYP,TU1,TU 2,TU3,GA,XO,DXO,AA 

+ ,LABEL(LTFTYP) 
GOTO 3 

END IF 
IF (TU3.EQ.0. .AND. TUl.GT.O. .AND.TU2.GT.0.)  THEN 
WRITE(8,1006) 
LTFTYP  = 3 
GA = GA/TU2 
TU1=TU1/TU2 
TU2=0. 
TU3=0. 
WRITE(8,1000) 
WRITE(8,1052)LTFID,LTFTYP,TU1,TU2,TU3,GA,X0,DXO,AA 

+ ,LABEL(LTFTYP) 
GOTO 3 

END IF 
IFLAG =1 
GOTO 2 

END IF 
IF (TUl.LE.O. .AND. LTFTYP.LE.4) THEN 

IFLAG =1 
WRITE(8,1003) 
GO TO 2 

END IF 
3 CONTINUE 

IF (TU2.GT.0. .AND. LTFTYP.LE.3) THEN 
TU2=0. 
WRITE(8,1003) 

END IF 
IF (LTFTYP.EQ.4 .AND. TU2.EQ.0. .AND. TUl.GT.O.) THEN 

LTFTYP = 1 
WRITE '8,1003) 
WRTT^(8,1005) 

WRITE (8,1000) 
WRITE(8,10 52)LTFID,LTFTYP,TU1,TU2,TU3,GA,X0,DX0,AA 

+ ,LABEL(LTFTYP) 
END IF 

IF (TU1.EQ.TU2 .AND. LTFTYP.EQ.4) THEN 
WRITE(8,1007) 

END IF 
IF (TU3.GT.0. .AND. LTFTYP.LT.5) THEN 

TU3=0.0 
WRITE(8,1003) 

END IF 
IF (GA.LE.O.) WRITE(8,1008) 
TAUl(LTFID)  = TUl 
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TU2 
TU3 
XO 
DXO 
= LTFTYP 
= GA 

STOP 

1000 
1001 
1002 

1003 
1004 
1005 
1006 

1007 

1008 
1050 

FUNCTION WILL BE TREATED AS:' 
10*** KTFID OUT OF RANGE.' ) 
10*** THIS TRANSFER FUNCTION 

FORMAT ( ' 
+ 'KTFTYP 
FORMAT ( ' 

10*** 
10*** 

1ST 
1ST 

ORDER 
ORDER 

TAU OUT OF RANGE.' ) 
KTFTYP OUT OF RANGE.') 

LAG.   KTFTYP -> 1.' 
LAG WITH INTEGRATOR. 

TRANSFER FUNCTION' 

RANGE. ) 
KTFID' 

,9X,'X' 

TAU2(LTFID) 
TAU3(LTFID) 
TFAUX(LTFID) = 
TFAUX2(LTFID)= 
KTFTYP(LTFID) 
GAIN(LTFID) 

2 WRITE(8,1053) 
4 WRITE(8,1053) 

IF (IFLAG.NE.O) 
RETURN 
FORMAT(' ***THIS TRANSFER 
FORMAT(' ***ERROR IN TRNF 
FORMAT(' ***ERROR IN TRNF 

+ ,'ALREADY DEFINED.') 
FORMAT(' ***ERROR IN TRNF 
FORMAT(' ***ERROR IN TRNF 
FORMAT('    SUBSTITUTING 

SUBSTITUTING 
-> 3. ' ) 
***ERROR IN TRNF 10*** TAUl = TAU2 

+ ' DEGENRATES TO UNITY.' ) 
FORMAT(' ***ERROR IN TRNF 10*** GAIN OUT OF 
FORMAT(///,'ITRANSFER FUNCTIONS DEFINITIONS 

+ ' KTFTYP',6X,'TAUl',6X,'TAU2',6X,'TAU3',6X,'GAIN' 
+ 8X,'DX',//) 

1051 FORMAT(212,5X,6F6.0,5X,A30) 
1052 FORMAT(217,6F10.5,/,' DESCRIPTION: 
1053 FORMAT(/) 

END 
SUBROUTINE TRNF(XIN,XOUT,T,KTFID) 

C     THIS ROUTINE EVALUATES THE FOLLOWING 
C       1ST ORDER LAG; 
C       1ST ORDER LAG WITH DIFFERENTIATION; 
C       1ST ORDER LAG WITH INTEGRATION; 
C       COMBINED LEAD/LAG; 
C       2ND ORDER LAG - HARMONIC OSCILLATOR. 
C     XIN     DRIVING TERM. 
C     XOUT    OUTPUT OF TRANSFER FUNCTION. 
C     T       TIME. 
C      KTFTYP  1 -> 1/(TAU1*S+1) 
C 2 -> S/(TAU1*S+1) 
C 3 -> 1/(S*(TAU1*S+1)) 
C 4 -> (TAU2*S+1)/(TAU1*S+1) 
C 5 -> 1/(TAU1*S**2 + TAU2*S +TAU3) 
C     KTFID   ID NO. OF CHANNEL (VARIABLE). 

COMMON/TRNSF/TAUl(50) ,TAU2 (50) ,TAU3(50) ,TFTIME(50) ,TFAUX (50) 
+ TFAUX2 (50) ,KTFTYP(50) ,GAIN(50) 
REAL KK,II 
IF (KTFID.LT.l .OR.KTFID.GT.50) GOTO 102 
KTF = KTFTYP(KTFID) 
IF (KTF.LT.l .OR. KTF.GT.5) GOTO 103 

,A30,2X,A30) 

TRANSFER FUNCTIONS 
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XOUT =0. 
XTMP =0. 
XTMP2 = 0. 

IF (TFTIME(KTFID).GT.T) GOTO 101 
TDELTA  = T - TFTIME(KTFID) 
IF (TDELTA.EQ.0.) THEN 

TFEXP  = 1. 
TFEXOT = l./TAUl (KTFID) 
GOTO 1 

END IF 
TFEXP  = EXP(-TDELTA/TAU1(KTFID)) 
FOLLOWING CODE ASSURES CORRECT LIMITING VALUES AS TAU -> 0. 
IF (ABS(TAUl(KTFID)/TDELTA)  .LT. l.E-4) THEN 

TFEXOT = 1.0/TDELTA 
ELSE 

TFEXOT = TFEXP/TAUl(KTFID) 
END IF 

L DRIVE   = XIN 
OMEGA   = DRIVE 
KTF = KTFTYP(KTFID) 
IF (KTF.EQ.4) OMEGA=(1.-TAU2(KTFID)/TAUl(KTFID))* 

+ DRIVE 
IF(KTF.EQ.l .OR. KTF.EQ.4) XTMP = 

+   TFAUX(KTFID)*TFEXP+(1.-TFEXP)*OMEGA 
IF (KTF.EQ.l) XOUT = XTMP 
IF (KTF.EQ.2) THEN 

XTMP = TFEXOT*(DRIVE-TFAUX2(KTFID) )+TFAUX (KTFID)*TFEXP 
XOUT = XTMP 
XTMP2= DRIVE 

END IF 
IF(KTF.EQ.3) THEN 

TEMP = TFAUX2(KTFID)-DRIVE 
XTMP=TFAUX(KTFID)+TAU1(KTFID)*TEMP*(1.-TFEXP)+DRIVE*TDELTA 
XOUT = XTMP 
XTMP2 = TEMP*TFEXP+DRIVE 

END IF 
IF (KTF.EQ.4) XOUT = DRIVE*(TAU2(KTFID)/TAUl (KTFID) ) 

+ + XTMP 
"^^    (KTF.EQ.5) THEN 

KK       = TAU3 (KTFID) 
II       = TAUl(KTFID) 
BETA    = TAU2(KTFID) 
FORCE   = DRIVE 
DELZ     = TFAUX(KTFID) 
DELDZ   = TFAUX2(KTFID) 
TLAST   = TFTIME(KTFID) 
CALL SOLAG(II,BETA,KK,DELZ,DELDZ,FORCE,T,TLAST,DELT,DELTD) 
XTMP    = DELT 
XTMP2   = DELTD 
XOUT    = XTMP 

END IF 

21 



100 TFTIME(KTFID)  = T 
TFAUX(KTFID)    = XTMP 
TFAUX2(KTFID)  = XTMP2 
XOUT = XOUT*GAIN(KTFID) 

C ABOVE SAVES XD FOR 2ND ORDER LAG/OSCILLATOR AND DX/DT FOR 
C FIRST ORDER LAG WITH DIFFERENTIATOR. FOR USE AS INITIAL 
C CONDITIONS ON NEXT INTEGRATION STEP. 

RETURN 
101 WRITE(8,200) T,TFTIME(KTFID),KTFID 

STOP 
102 WRITE(8,201) KTFID 

STOP 
103 WRITE(8,202) KTF 

STOP 
200 FORMATC ***ERROR*** IN TRNF. TIME=' ,F10.5, ' IS GREATER THAN ', 

+ 'LAST TIME=' ,F10.5, ' FOR CHANNEL' ,I 3,//) 
201 FORMATC ***ERROR*** IN TRNF. CHANNEL NO. KTFID=',I4, 

+ ' IS OUT OF RANGE.'//) 
202 FORMATC ***ERROR*** IN TRNF. TYPE CODE NUMBER KTFID=',I4, 

+ ' IS OUT OF RANGE.'//) 
END 
SUBROUTINE SOLAG(II,BETA,KK,DELZ,DELDZ,FORCE,T,TLAST,DELT, 

+ DELTD) 
C DIFFERENTIAL EQUATION 
C II*YDDOT + BETA*YDOT + KK*Y = FORCE 
C NOTE: THE CALLING ROUTINE MUST SAVE TLAST,DELZ AND DELDZ 
C FOR THE NEXT CALL TO SOLAG 

REAL NUM ,LAMB1, LAMB2, LAMB, II, KK 
IF (BETA.LT.O. .OR. KK.LE.0.) THEN 

WRITE(8,1000) BETA,KK 
STOP 

END IF 
IF (II.LT.O.) THEN 

WRITE (8,1001) II 
STOP 

END IF 
B0V2I = BETA/(2.*II) 
RDCND = BOV2I**2 -KK/II 
FOVK  = FORCE/KK 
IF(RDCND .GT. 0.)GO TO 100 
IF(RDCND .EQ. 0.)GO TO 120 

C OSCILLATORY SOLUTION 
LAMB  =-B0V2I 
OMEGA = SQRT (-RDCND) 
NUM   = OMEGA*(DELZ-FOVK) 
DENOM = DELDZ-LAMB*(DELZ-FOVK) 
LAMB  = -B0V2I 
IF(NUM .EQ. 0.  .AND. DENOM .EQ. 0.) GO TO 20 
PHI = ATAN2(NUM,DENOM) - OMEGA*TLAST 
GO TO 30 

20 CONTINUE 
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PHI = 0. 
30 CONTINUE 

ETEMP = EXP(-LAMB*TLAST) 
IF(DELZ - FOVK .EQ. 0.)GO TO 40 
A=(DELZ - FOVK)*ETEMP/SIN(OMEGA*TLAST+PHI) 
GO TO 50 

40 CONTINUE 
A=DELDZ*ETEMP/(LAMB*SIN(OMEGA*TLAST + PHI) 

1 +OMEGA*COS(OMEGA*TLAST + PHI)  ) 
50 CONTINUE 

FTEMP = EXP(LAMB*T) 
DELT= A*FTEMP*SIN(OMEGA*T + PHI) + FOVK 
DELTD = LAMB*A*FTEMP*SIN(OMEGA*T+PHI) + 

1      OMEGA*A*FTEMP*COS(OMEGA*T+PHI) 
GO TO 150 

100 CONTINUE 
: EXPONENTIAL SOLUTION 

LAMBl = -B0V2I+SQRT(RDCND) 
LAMB2 = -B0V2I-SQRT(RDCND) 
A = (DELZ - DELDZ/LAMB2 - FOVK)*EXP(-LAMB1*TLAST)/ 

1 (1. - LAMB1/LAMB2) 
B = (DELZ - DELDZ/LAMBl - FOVK)*EXP(-LAMB2*TLAST)/ 

1 (1. - LAMB2/LAMB1) 
DELT = A*EXP(LAMB1*T) + B*EXP(LAMB2*T) + FOVK 
DELTD = LAMB1*A*EXP(LAMB1*T)+LAMB2*B*EXP(LAMB2*T) 
GO TO 150 

120 CONTINUE 
:     CRITICALLY DAMPED SOLUTION 

LAMB = -B0V2I 
A=((DELZ-FOVK)*(1+TLAST*LAMB)-TLAST*DELDZ)*EXP(-LAMB*TLAST) 
B=(DELDZ+LAMB*(FOVK-DELZ))*EXP(-LAMB*TLAST) 
DELT   = (A+B*T)*EXP(LAMB*T)+FOVK 
DELTD = (LAMB*A+B+LAMB*B*T)*EXP(LAMB*T) 

150 CONTINUE 
TLAST = T 
DELZ  = DELT 
DELDZ = DELTD 
P-^TURN 

1000 _ORMAT(/,' ***-ERR IN SOLAG-*** BETA=',E12.4,',KK=',E12.4,/, 
+ ' ONLY POSITIVE DEFINITE VALUES ALLOWED.',/) 

lOCi FORMAT(/,' ***-ERR IN SOLAG-*** II=',E12.4,/ 
+ ' NEGATIVE VALUES NOT ALLOWED.',/) 
END 
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SAMPLE DATA INPUT CARDS. 

K K T T T G X D 
T T A A A A X 
F F U U U I 
I T 1 2 3 N 
D Y • • • 
. P • • • 
•    • • • • 

0101 .02 0. 0. 4.0 0.0 0 
0202 .2 0. 0. 2.0 0.0 0 
0303 .02 0. 0. 2.0 0.0 0 
0404 .02 .01 0.0 1.0 0.0 0 
0504 .02 0. 0.0 1.0 0.0 0 
0605 1. 3. .25 1.0 10.0 0 
0705 1. 1. .25 1.0 10.0 0 
0805 1. .5 .25 1.0 10.0 0 
0905 1. .0 .25 1.0 10.0 0 
1005 0. .5 .25 1.0 10.0 0 
1105 1. .5 .0 1.0 10.0 0 
1205 .001 .0002 20. 1.0 10.0 0 
1305 .0002 0.0 5000. 1.0 10.0 0 

A 

PITCH ATTITUr . HOLD 
PITCH SYNTHETIC DAMPING 
YAW ATTITUDE HOLD 
YAW LOS RATE FILTER 
YAW LOS RATE FILTER 
PURE DAMPING 
CRITICALLY DAMPED 
DAMPED OSCILLATION 
PURE OSCILLATION 
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SAMPLE OUTPUT 

TRANSFER FUNCTIONS DEFINITIONS: 

KTFID KTFTYP      TAUl      TAU2      TAU3      GAIN X 

1      1    .02000    .00000    .00000   4.00000    .00000 
DESCRIPTION:  PITCH ATTITUDE HOLD GAIN/(TAU1*S+1) 

DX 

00000 

2 2    .20000    .00000    .00000 2.00000    .00000    .00000 
DESCRIPTION:  PITCH SYNTHETIC DAMPING GAIN*S/(TAU1*S+1) 

3 3    .02000    .00000    .00000 2.00000    .00000    .00000 
DESCRIPTION:  YAW ATTITUDE HOLD GAIN/(S*(TAU1*S+1)) 

4 4    .02000    .01000    .00000 1.00000    .00000    .00000 
DESCRIPTION:  YAW LOS RATE FILTER GAIN*(TAU2*S+1)/(TAUl*S+1) 

5 4    .02000    .00000    .00000 1.00000    .00000    .00000 
DESCRIPTION:  YAW LOS RATE FILTER GAIN *(TAU2*S + 1)/(TAU1*S + 1) 
***ERROR IN TRNF 10*** TAU OUT OF RANGE. 

SUBSTITUTING 1ST ORDER LAG.   KTFTYP -> 1. 
***THIS TRANSFER FUNCTION WILL BE TREATED AS: 

5 1    .02000    .00000    .00000 1.00000    .00000    .00000 
DESCRIPTION:  YAW LOS RATE FILTER GAIN/(TAU1*S+1) 

6 5   1.00000   3.00000    .25000 1.00000  10.00000    .00000 
DESCRIPTION:  PURE DAMPING GAIN/(TAU1*S**2+TAU2*S+TAU3) 

7 5   1.00000   1.00000    .25000 1.00000  10.00000    .00000 
DESCRIPTION:  CRITICALLY DAMPED GAIN/(TAU1*S**2+TAU2*S+TAU3) 

8 5   1.00000    .50000    .25000 1.00000  10.00000    .00000 
DESCRIPTION:  DAMPED OSCILLATION GAIN/(TAU1*S**2+TAU2*S+TAU3) 

9 5   1.00000    .00000    .25000 1.00000  10.00000    .00000 
DESCRIPTION:  PURE OSCILLATION GAIN/(TAU1*S**2+TAU2*S+TAU3) 
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10      5    .00000    .50000    .25000 
DESCRIPTION: 
***ERROR IN TRNF 10*** TAU OUT OF RANGE. 

SUBSTITUTING 1ST ORDER LAG.   KTFTYP -> 1. 
***THIS TRANSFER FUNCTION WILL BE TREATED AS: 

10      1   2.00000    .00000    .00000   4.00000  10.00000 
DESCRIPTION: GAIN/(TAUl*S+l) 

1.00000  10.00000    .00000 
GAIN/(TAU1*S**2+TAU2*S+TAU3) 

.00000 

11      5   1.00000    .50000 .00000 
DESCRIPTION: 
***ERROR IN TRNF 10*** TAU OUT OF RANGE. 

SUBSTITUTING 1ST ORDER LAG WITH INTEGRATOR.  KTFTYP -> 3. 
***THIS TRANSFER FUNCTION WILL BE TREATED AS: 

11      3   2.00000    .00000 .00000   2.00000  lO.OGOOO 
DESCRIPTION: GAIN/(S*(TAU1*S+1)) 

1.00000  10.00000    .00000 
GAIN/(TAU1*S**2+TAU2*S+TAU3) 

.00000 

12      5 
DESCRIPTION: 

.00100 00020  20.00000 1.00000  10.00000    .00000 
GAIN/(TAU1*S**2+TAU2*S+TAU3) 

13      5 
DESCRIPTION: 

.00020 ,000005000.00000 1.00000      10.00000 .00000 
GAIN/{TAU1*S**2+TAU2*S+TAU3) 
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THE INTEGRATION TIME STEP DT =   .005000 

LTFID •   TIME DRIVE X 
1 .00000 .00000 .00000 
1 1.00000 -1.41615 -5.53438 
1 2.00000 -1.65364 -6.71729 
1 3.00000 -.03983 -.20403 
1 4.00000 -1.14550 -4.44207 
1 5.00000 -1.83907 -7.42804 

LTFID ^   TIME DRIVE X 
2 .00000 .00000 .00000 
2 1.00000 -1.41615 -3.67251 
2 2.00000 -1.65364 1.68669 
2 3.00000 -.03983 2.25946 
2 4.00000 -1.14550 -3.56729 
2 5.00000 -1.83907 .70957 

LTFID TIME DRIVE X 
3 .00000 .00000 .00000 
3 1.00000 -1.41615 -1.04245 
3 2.00000 -1.65364 -4.69789 
3 3.00000 -.03983 -6.27757 
3 4.00000 -1.14550 -6.97196 
3 5.00000 -1.83907 -10.47893 

LTFID TIME DRIVE X 
4 .00000 .00000 .00000 
4 1.00000 -1.41615 -1.39987 
4 2.00000 -1.65364 -1.66648 
4 3.00000 -.03983 -.04542 
4 4.00000 -1.14550 -1.12801 
4 5.00000 -1.83907 -1.84804 

LTFID TIME DRIVE X 
5 .00000 .00000 .00000 
5 1.00000 -1.41615 -1.38360 
5 2.00000 -1.65364 -1.67932 
5 3.00000 -.03983 -.05101 
5 4.00000 -1.14550 -1.11052 
5 5.00000 -1.83907 -1.85701 
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LTFID 
6 
6 
6 
6 
6 
6 

TIME 
.00000 

1.00000 
2.00000 
3.00000 
4.00000 
5.00000 

DRIVE 
.00000 
41615 
65364 
03983 
14550 
83907 

X 
10.00000 
9.35272 
8.09988 
7.04001 
6.35853 
5.38481 

LTFID 
7 
7 
7 
7 
7 
7 

TIME 
,00000 
,00000 
,00000 
00000 
,00000 
,00000 

DRIVE 
.00000 
.41615 
.65364 
.03983 
.14550 
.83907 

X 
10.00000 
8.97774 
6.33926 
3.54^J9 
1.7b784 
.10284 

LTFID 
8 
8 
8 
8 
8 
8 

TIME 
00000 
00000 
00000 
00000 
,00000 
,00000 

-1 
-1 

-1 

DRIVE 
.00000 
.41615 
.65364 
.03983 
.14550 

10 
8 
5 
1 

-1 

X 
00000 
,82387 
,36682 
,15018 
,86486 

-1.83:^07 -4.23518 

LTFID 
9 
9 
9 
9 
9 
9 

TIME 
.00000 

1.00000 
2.00000 
3.00000 
4.00000 
5.00000 

DRIVE 
.00000 
.41615 
.65364 
.03983 
.14550 
.83907 

10 
8 
3 

-3 
-9 

■15 

X 
00000 
62980 
87712 
25255 
90176 
20981 

LTFID 
10 
10 
10 
10 
10 
10 

TIME 
00000 
,00000 
00000 
00000 
00000 

5.00000 

DRIVE 
.00000 

1.41615 
65364 
03983 
14550 
83907 

-1 

-1 
-1 

40.00000 
23.29664 
11.23015 
5.73197 
2.81734 

-1.12071 

LTFID 
11 
11 
11 
11 
11 

TIME 
.00000 

1.00000 
2.00000 
3.00000 
4.00000 

-1 
-1 

-1 

DRIVE 
.00000 
.41615 
.65364 
.03983 
.14550 

20 
19 
18 
16 
15 

X 
00000 
86679 
71997 
91363 
57969 
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11 5.00000 -1.83907 13.85090 

LTFID 
12 
12 
12 
12 
12 
12 

TIME 
.00000 

1.00000 
2.00000 
3.00000 
4.00000 
5.00000 

DRIVE 
.00000 

-1.41615 
-1.65364 
-.03983 
-1.14550 
-1.83907 

10.00000 
-9.10857 
8.06504 

-7.32883 
6.51484 

-5.97223 

LTFID 
13 
13 
13 
13 
13 
13 

TIME 
.00000 

1.00000 
2.00000 
3.00000 
4.00000 
5.00000 

DRIVE 
.00000 

-1.41615 
-1.65364 
-.03983 
-1.14550 
-1.83907 

X 
10.00000 
1.54640 

-9.52188 
-4.49206 
8.13177 
7.00721 
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APPENDIX   B 

PROGRAM USAGE 
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The program consists of three subroutines (TRNF 10, TRNF, and SOLAG) and a 
main program, TFMAIN.* TRNF 10 is the initialization routine. The data records 
that define the transfer functions are read by this routine. (See the explana- 
tion for input data format given below.) TRNF performs the analytical transfer 
function simulations. It accesses subroutine SOLAG for treatment of the second 
order lag/harmonic oscillator. The driving main program TFMAIN is supplied for 
demonstration and testing only. Use it as a model for interfacing TRNF 10, TRNF, 
and SOLAG with your computer program. The initial time is at line 100 and the 
integration time step is at line 200. The driving term is defined in the lines 
following 300. 

The call to TRNF contains four arguments: 

DRIVE    Driving function 

XOUT     Output of the transfer function channel 

T        Time 

J        Channel I.D. number LTFID 

One input data record is required for each transfer function variable to be 
integrated.  These records have the following form: 

Column   Format   Variable   Definition 

^      12       LTFID     I.D number of channel; values are from 
1 to 50 

12       LTFTYP 

10 F9.0 TAUl 

19 F9.0 TAU2 

28 F9.0 TAU3 

37 F9.0 XO 

46 F9.0 DXO 

Code for type of transfer function; 
values are 1 to 5 

First constant, for all LTFTYP 

Second constant, for LTFTYP = 4 or 5 

Third constant, for LTFTYP=5 

Initial condition for variable 

Initial condition for derivative 
of variable 

55      A26      AA       Alphanumeric label 

LTFID is an integer variable from 1 to 50 that is associated with each 
transfer function channel (output variable) to be simulated.  For example, a lag 

*  A listing of a program implementing these techniques and a sample run are in 
appendix A. 
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might be applied to both a fin yaw deflection command and to a fin pitch deflec- 
tion command. Each of these two channels is defined as a separate data input 
record and is assigned an identifying integer LTFID. If the user chooses an 
integer that was previously assigned on another input data record, execution 
terminates with an explanatory message. 

LTFTYP is an integer variable in the range 1 to 5 that defines the type of 
transfer function: 

LTFTYP Description and FORTRAN code 

1 First-order lag 
1/(TAU1*S + 1) 

2 First-order lag with differentiator 
S/(TAU1*S + 1) 

3 First-order lag with integrator 
1/[S*(TAU1*S + 1)] 

4 Combined lead/lag 
(TAU2*S + 1)/(TAU1*S +1) 

Second-order lag/harmonic osc 
1/(TAU1*S'' + TAU2*S -t TAU3) 

illator 

TAUl is the first constant (see LTFTYP above).  All five transfer function 
types (LTFTYP = 1 to 5) require this quantity to be positive. 

TAU2 is the second constant. Lead/lag and second-order lag/oscillator 
transfer functions (LTFTYP = 4,5) require a positive value. 

TAU3 is the third constant. The second-order lag/oscillator (LTFTYP = 5) 
requires a positive value. 

XO is the initial condition on the output variable, i.e., y = y at t = t . 

DXO is the initial condition on the derivative of the output variable v' = 
dy/dt at t = t . ' -^ 

AA is an alphanumeric label of 26 characters that identifies the nature of 
the transfer function when an echo of the input data is printed out by TRNF 10. 
Examples might be "PITCH SYNTHETIC DAMPING" or "YAW ATTITUDE HOLD." 

If an input variable is out of range, the program prints an error message 
and reformulates the transfer function into an equivalent form. For example, if 
an attempt is made to run an oscillator (LTFTYP = 5) with TAUl = 0, subroutine 
TRNF 10 will substitute the equivalent simple lag (LTFTYP = 1), as can be seen in 
the sample output for KTFID =10. Two other examples appear in the sample output 
in the sample execution, i.e., for KTFID = 5 and KTFID = 11. 
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SYMBOLS 
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Algebraic Expressions 

A        Constant of integration 

B       Constant of integration 

D 

K 

(0 

Coefficient of the Laplace operator s in the transfer function of 
the second-order lag/oscillator 

Coefficient of the square of the Laplace operator s in the transfer 
function of the second-order lag/oscillator 

Constant  term  in  the  transfer  function  of  the  second-order 
lag/oscillator 

L Damping coefficient -D/2I for the second-order lag/oscillator 

s Laplace transform operator 

t Time, independent variable 

T Time constant 

D Driving term 

y Output of transfer function, dependent variable 

YQ Initial condition on y at t = t 

y' Initial condition on dy/dt at t = t 

z Auxiliary dependent variable for first-order lag with differentia- 
tion or for first-order lag with integration 

Frequency of oscillation for second-order lag/oscillator 

Phase angle of oscillation for second-order lag/oscillator 
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FORTRAN Variable Names 

AA 

DX 

KTFID 

KTFTYP 

T 

TAUl 

TAU2 

TAU3 

X 

XIN 

XOUT 

Alphanumeric label for printout (80 characters) 

Initial condition on derivative when KTFTYP=5 

I.D. number of channel or variable (range is 1 to 50) 

Integer variable used to indicate type of transfer function (range 
1 to 50) * 

KTFTYP = 1 is first-order lag 
Transfer function:  GAIN/(TAU1*S+1) 

KTFTYP = 2 is first-order lag with differentiation 
Transfer function:  GAIN*S/(TAU1*S+1) 

KTFTYP = 3 is first-order lag with integration 
Transfer function:  GAIN/[S*(TAU1*S+1)] 

KTFTYP = 4 is combined lead/lag 
Transfer function:  GAlN-*-(TAU2*S+l/(TAUl*S+l) 

KTFTYP = 5 is second-ordtr lag/harmonic oscillator 
Transfer function:  GAIN/(TAU1*S**2 + TAU2*S +TAU3) 

Time 

First time constant 

Second time constant (Tj for KTFTYP=4 or D for KTFTYP) 

Third time constant (K for KTFTYP=5) 

Initial condition on variable 

Driving term 

Output of transfer function 
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